skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brown, Ashley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 7, 2026
  2. Blood coagulation is a highly regulated injury response that features polymerization of fibrin fibers to prevent the passage of blood from a damaged vascular endothelium. A growing body of research seeks to monitor coagulation in microfluidic systems but fails to capture coagulation as a response to disruption of the vascular endothelium. Here we present a device that allows compression injury of a defined segment of a microfluidic vascular endothelium and the assessment of coagulation at the injury site. This pressure injury-on-a-chip (PINCH) device allows visualization of coagulation as the accumulation of fluorescent fibrin at injury sites. Quantification of fluorescent fibrin levels upstream of and at injury sites confirm that pre-treating vascular endothelium with fluid shear stress helps capture coagulation as an injury response. We leverage the PINCH devices to demonstrate the limited coagulation response of type A hemophiliacs and evaluate the performance of hemostatic microparticles and fibrinolytic nanoparticles. Our findings and the straightforward fabrication of the PINCH devices make it a promising choice for additional screening of hemostatic therapeutics. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  3. Abstract Platelets play a pivotal role in hemostasis and wound healing and conditional shape change is an important component of platelet functionality. In normal circumstances, platelets travel through the circulatory system in an inactive rounded state, which enables platelets to easily move to vessel walls for attachment. When an injury occurs, platelets are prompted by molecules, such as thrombin, to shift into a stellate shape and increase exposure of fibrin‐binding receptors. When active, platelets promote hemostasis and clot retraction, which enhances clot stability and promotes healing. However, in conditions where platelets are depleted or hyporeactive, these functions are diminished and lead to inhibited hemostasis and healing. To treat platelet depletion, our group developed platelet‐like particles (PLPs) which consist of highly deformable microgels coupled to fibrin binding motif. However, first generation PLPs do not exhibit wound‐triggered shape change like native platelets. Thus, the objective of these studies was to develop a PLP formulation that changes shape when prompted by thrombin. To create thrombin‐sensitive PLPs (TS‐PLPs), we incorporated a thrombin‐cleavable peptide into the microgel body and then evaluated PLP properties before and after exposure to thrombin including morphology, size, and in vitro clot retraction. Once thrombin‐prompted shape change ability was confirmed, the TS‐PLPs were tested in vivo for hemostatic ability and subsequent wound healing outcomes in a murine liver trauma model. We found that TS‐PLPs exhibit a wound‐triggered shape change, induce significant clot retraction following exposure to thrombin and promote hemostasis and healing in vivo after trauma. 
    more » « less
  4. Microphysiological systems (MPS) incorporate physiologically relevant microanatomy, mechanics, and cells to mimic tissue function. Reproducible and standardized in vitro models of tissue barriers, such as the blood-tissue interface (BTI), are critical for next-generation MPS applications in research and industry. Many models of the BTI are limited by the need for semipermeable membranes, use of homogenous cell populations, or 2D culture. These factors limit the relevant endothelial-epithelial contact and 3D transport, which would best mimic the BTI. Current models are also difficult to assemble, requiring precise alignment and layering of components. The work reported herein details the engineering of a BTI-on-a-chip (BTI Chip) that addresses current disadvantages by demonstrating a single layer, membrane-free design. Laminar flow profiles, photocurable hydrogel scaffolds, and human cell lines were used to construct a BTI Chip that juxtaposes an endothelium in direct contact with a 3D engineered tissue. A biomaterial composite, gelatin methacryloyl and 8-arm polyethylene glycol thiol, was used for in situ fabrication of a tissue structure within a Y-shaped microfluidic device. To produce the BTI, a laminar flow profile was achieved by flowing a photocurable precursor solution alongside phosphate buffered saline. Immediately after stopping flow, the scaffold underwent polymerization through a rapid exposure to UV light (<300 mJ/cm2). After scaffold formation, blood vessel endothelial cells were introduced and allowed to adhere directly to the 3D tissue scaffold, without barriers or phase guides. Fabrication of the BTI Chip was demonstrated in both an epithelial tissue model and blood-brain barrier (BBB) model. In the epithelial model, scaffolds were seeded with human dermal fibroblasts. For the BBB models, scaffolds were seeded with the immortalized glial cell line, SVGP12. The BTI Chip microanatomy was analyzed post facto by immunohistochemistry, showing the uniform production of a patent endothelium juxtaposed with a 3D engineered tissue. Fluorescent tracer molecules were used to characterize the permeability of the BTI Chip. The BTI Chips were challenged with an efflux pump inhibitor, cyclosporine A, to assess physiological function and endothelial cell activation. Operation of physiologically relevant BTI Chips and a novel means for high-throughput MPS generation was demonstrated, enabling future development for drug candidate screening and fundamental biological investigations. 
    more » « less
  5. Uncontrolled bleeding after trauma represents a substantial clinical problem. The current standard of care to treat bleeding after trauma is transfusion of blood products including platelets; however, donated platelets have a short shelf life, are in limited supply, and carry immunogenicity and contamination risks. Consequently, there is a critical need to develop hemostatic platelet alternatives. To this end, we developed synthetic platelet-like particles (PLPs), formulated by functionalizing highly deformable microgel particles composed of ultralow cross-linked poly (N-isopropylacrylamide) with fibrin-binding ligands. The fibrin-binding ligand was designed to target to wound sites, and the cross-linking of fibrin polymers was designed to enhance clot formation. The ultralow cross-linking of the microgels allows the particles to undergo large shape changes that mimic platelet shape change after activation; when coupled to fibrin-binding ligands, this shape change facilitates clot retraction, which in turn can enhance clot stability and contribute to healing. Given these features, we hypothesized that synthetic PLPs could enhance clotting in trauma models and promote healing after clotting. We first assessed PLP activity in vitro and found that PLPs selectively bound fibrin and enhanced clot formation. In murine and porcine models of traumatic injury, PLPs reduced bleeding and facilitated healing of injured tissue in both prophylactic and immediate treatment settings. We determined through biodistribution experiments that PLPs were renally cleared, possibly enabled by ultrasoft particle properties. The performance of synthetic PLPs in the preclinical studies shown here supports future translational investigation of these hemostatic therapeutics in a trauma setting. 
    more » « less
  6. Uncontrolled bleeding is a major problem in trauma and emergency medicine. While materials for trauma applications would certainly find utility in traditional surgical settings, the unique environment of emergency medicine introduces additional design considerations, including the need for materials that are easily deployed in austere environments. Ideally, these materials would be available off the shelf, could be easily transported, and would be able to be stored at room temperature for some amount of time. Both natural and synthetic materials have been explored for the development of hemostatic materials. This review article provides an overview of classes of materials used for topical hemostats and newer developments in the area of injectable hemostats for use in emergency medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  7. The recent global outbreaks of epidemics and pandemics have shown us that we are severely under-prepared to cope with infectious agents. Exposure to infectious agents present in biofluids ( e.g. , blood, saliva, urine etc. ) poses a severe risk to clinical laboratory personnel and healthcare workers, resulting in hundreds of millions of hospital-acquired and laboratory-acquired infections annually. Novel technologies that can minimize human exposure through remote and automated handling of infectious biofluids will mitigate such risk. In this work, we present biofluid manipulators, which allow on-demand, remote and lossless manipulation of virtually any liquid droplet. Our manipulators are designed by integrating thermo-responsive soft actuators with superomniphobic surfaces. Utilizing our manipulators, we demonstrate on-demand, remote and lossless manipulation of biofluid droplets. We envision that our biofluid manipulators will not only reduce manual operations and minimize exposure to infectious agents, but also pave the way for developing inexpensive, simple and portable robotic systems, which can allow point-of-care operations, particularly in developing nations. 
    more » « less